Factor Rings
with Thm Sps R is a ring and I is an ideal. The
sot of all (additive) cosets of I in R

$$R/I = \{r + I\} | r \in R \}$$

is a ring under addition defined by
 $(r+I) + (s+I) = (r+s) + I \leftarrow (hrpth b) = abd
in addition defined by
 $(r+I)(s+I) = rs+I$.
 $(r+I)(s+I) = rs+I$.
 $restrict attention defined by
 $rotation$
 $(r+I)(s+I) = rs+I$.
 $first,$
restrict attention $defined$ by
 $rotation$
 $(r+I)(s+I) = rs+I$.
 $first,$
 $restrict attention d is a normal
subgroup. So from previous work, R/I
is an abelian group under coset addition.
 $(NTS: coset multiplication is well -defined.)$$$$

Sps.
$$r_1 + I = r_2 + I$$
 and $s_1 + I = s_2 + I$.
 $L \text{ Nead: } r_1 s_1 + I = r_2 s_2 + I$.
Since $r_1 + I = r_2 + I$, $r_1 = r_2 + a_r$ for some $a_r \in I$.
Since $s_1 + I = s_2 + I$, $s_1 = s_2 + a_s$ for some $a_s \in I$.
So:
 $r_1 s_1 = (r_2 + a_r)(s_2 + a_s)$
 $= r_2 s_2 + a_r s_1 + r_s a_s + a_r a_s$
 $= r_2 s_2 + b$ where $b \in I$.
Itimus test
Thus $r_1 s_1 - r_2 s_2 \in I$ so $r_1 s_1 + I = r_2 s_2 + I$.
 b
 $C_{so:mult}$ well-defined.
Finally, multiplicative associativity and distribution
hold in R/T because they hold in R .