Groups
a. La. Function
$$(a_1, a_2) \mapsto a_1a_2$$
.
Deter For a set G, a map $C \times C \rightarrow G$ is called a
binary operation.
 $G \times C = \{(a_1, a_2) \mid a_1, a_2 \in G\}$
 $e_{a_1} \quad (\mathbb{R}^2 = \mathbb{R} \times \mathbb{R})$
 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$
Deter A nonempty set G together with a binary operation
 $(a, b) \mapsto ab$ is a group if
1. $(ab)C = a(bc)$ for all $a_1b_1 \subset E G$. (associativity)
2. there exists an element $e \in G$ s.t.
 $ae = ea = a$ for all $a \in G$.
 $(e is the identity .)$
3. for each $a \in G$ there is an element $a^{-1} \in G$ s.t.
 $aa^{-1} = a^{-1}a = e$.
 $(each $a \in G$ has an inverse .)$

(Note: closure under binany operation is part of the detr.) 4 things to check: 1. closed under operation 2 associativity 3. identity 4. inverses. If ab = ba for all a, b \in G, b is called abelian Notes: 1. you need both a set and an operation to defive a group. 2. generically, we call the group operation "multiplication". (e.g. ab is "a times 5" or " a mult. by b".