Thm. Let G be a group and
$$a \in G$$
. Then a has
a while inverse, i.e. there is only one element
 $b \in G$ st: $a = ba = e$.
 $f \circ$:
 $proof$: Sps b, and b_2 are both inverses. (NTS: $b_1 = b_2$.)
Since both are inverses, $ab_1 = ab_2$.
Mult by sides on left by b_1 gives $b_1ab_1 = bab_2$
which inplies $b_1 = b_2$.
Mult by sides on left by b_1 gives $b_1ab_1 = bab_2$
which inplies $b_1 = b_2$.
Since a has only one inverse, we can unambriguously denote it a^{-1} .
Thm (Socks - Shoes) Sps a_1b elts of c group G.
 $(ab)^{-1} = b^{-1}a^{-1}$.
The check if x
proof: Multiply ab by $b^{-1}a^{-1}$:
 $(b^{-1}a^{-1})(ab) = b^{-1}a^{-1}$ ab
 $= b^{-1}b$
 $= e$. Soyes: $(ab)^{-1} = b^{-1}a^{-1}$.

Notation: Spe
$$a \in C$$
.
• $aaa \dots a \leq a^{n}$ $n \in \mathbb{Z}, n \geq 0$.
• $a^{n} = e$ (convention)
• $a^{n} = e$ (a^{n-1})² = $a^{-1}a^{-1}$.
• Sps $n \in \mathbb{Z}, n \leq 0$. Then a^{n} means $(a^{-1})^{\ln 1}$
• $e.g. a^{-2} = (a^{-1})^{2} = a^{-1}a^{-1}$.
• With this, we can regroup:
 $g^{n}P = (g^{n})^{p} = (g^{p})^{n}$
But CAREFUL: The general, $(gh)^{n} \neq g^{n}h^{n}$
 $ghgh \dots gh$
 $ghgh \dots gh$
 $ghgh \dots gh$
 $ghgh \dots gh$
 $ghgh \dots h$
 $n home n times$

Finally, if G is an additive group (e.g. R or Rn), we often write ab as a +b and c'as -c because it's more natural. e.g. $ab^2a^{-1}c$ would be written a+2b-a+c. 6+6