The identity is in the as follows:
Since
$$H \neq \emptyset$$
, choose some $x \in H$. Then letting $a = b = x$
by assumption $xx^{-1} \in H$, i.e. $e_c \in H$. Thus
Now, suppose that $x \in H$. By above, $y^{-1} \in H$. Thus
 b^{-1}
Finally, suppose that $x, y \in H$. Then, by above, $y^{-1} \in H$. Thus
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$. Thus
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$. Thus
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$. Thus
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$. Thus
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$. Thus
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by assumption $x(y^{-1})^{-1} \in H$, i.e. $xy \in H$, so H is closed
by a binary operation.

 $Q = \frac{203}{2}$ $E \times \cdot Q^{4} \leq IR^{4}$ (under mult.) Q^* nonempty ? yes! (e.g. $\frac{1}{2} \in Q^*$) Sps $\frac{P}{q}$, $\frac{r}{s} \in \mathbb{Q}^{4}$. Then $\left(\frac{r}{s}\right)^{-1} = \frac{S}{r}$ $a \qquad b \qquad Nok: r \neq 0 \quad b|_{L} \quad f \in \mathbb{Q}^{4}$ Then $\frac{p}{q} \cdot \frac{s}{r} = \frac{ps}{qr} = \frac{pr}{product}$ ab^{-1} $b0 \dots so eff of R^{4}$. Thus Q^{*} ≤ IR^{*}. Csulyp.