Thm let H be a nonempty finite subset of a group G
that is closed under the binary operation of G.
Then H is a subgroup of G.
Proof: By Two-Step Subgroup Test, it suffices to shaw that

$$a^{-1} \in H$$
 whenever $a \in H$.
If $a = e$, since $a^{-1} = a$, we're done.
Myorthelie
Sps. $a \neq e$. Consider a, a^2, a^3, \dots positive
powers of a.
By closure, all are in H.
Note $m-n \neq 0$ (b/c $m \neq n$). Asso, $m-n \neq l$ b/c if So
 $a^m = a^n \Rightarrow a^{n+1} = a^m \Rightarrow aa^n = a^m \Rightarrow a = e$., a contradiction.
So $m-n \geq l$. And then,
 $a^m = a^n \Rightarrow e = a^{m-n} = aa^{m-n-1}$. So $a^{-1} = a^{m-n-1} \in H$.