
Thy ( fundamental Theorem of Cyclic Groups ) FTCG

Consider a cyclic group .
Let a be a generator of the group.

(Thus the group can be expressed Ca?)

i . Every subgroup of a cyclic group is cyclic .

2
. If Ca) has order n , the order of every subgroup

of Ca 2 is a divisor of n .

3
.
For each divisor d of u

,
there exists exactly game

subgroup of ca> of order d
, namely sa >

.

proof of FTCG :

i
.
Consider ca? and Sps

H s sa? INTs : H is cyclic .)

If H -- Eef , done .

If H t Ee 's
,
there exists c- H for some teth .

It too
,
then c- It

.
Thus

, there

exists some positive power of a in H.
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let m be the smallest positive notCY.qemgetfssheats.atsmallest element.

integer such that am c- H
.

We will show that H -- cam ?
in

First Sam > SH because and It is closed
.

• generic element of H

OTOH
,
to see that Its cam >

, Sps as c- H
.
Write

S -
- where Os re m .

Then
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⇒ (bk ar --

⇒ (bk
-

smallest

⇒ as =

So HE Sam ? and we conclude that .

Tsui
.
His cystic , as desired .
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power in H
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