
FACT : Every permutation in Sn
,

n 32
,
can be written as a

product of 2- cycles (transpositions) .
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we use 2- cycle decomposition to classify permutations as

or

↳ this is a well-defined notion because of next theorem .

( I 7)( 13) (25)(26) (24)

(I3)( 37) (24)(46 ) ( 65)

( I 2)( I 2)

evey odd .



THX If d C- Sh can be expressed as a product of an

even number of transpositions then every

decomposition of a into transpositions will have an

even number of transpositions. Similar for odd .
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Lemmy Every decomposition of E in 2-cycles has an even

number of 2- cycles .

proof of theorem, given the lemma :
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