FACT: Every permutation in Sn, n?, 2, can be written as a product of 2-cycles (transpositions). Unot necessarily disjointly or uniquely (137)(2465) E So EX = (17)(13)(25)(26)(24) <u>- (13)(37)(24)(46)(65)</u> E= (12)(12) We use 2-cycle de composition to classify permutations as even or odd. Lo this is a well-defined notion because of next theorem.

Thim If
$$x \in S_n$$
 can be expressed as a product of an even number of transpositions then every decomposition of x into transpositions will have an even number of transpositions. Similar for odd.
identity
lemma Every decomposition of ε in 2-cycles has an even number of 2-cycles.
proof of theorem, given the lemma:
sps $\alpha = \beta_1 \beta_1 \cdots \beta_r = \delta_1 \delta_2 \cdots \delta_s$ where $\beta_{1,1} \delta_{1}$ are 2-cycles
(NTS: r_1 's both even or both odd)
Then $\beta_1 \cdots \beta_r \delta_5^{-1} \delta_{5-1}^{-1} \cdots \delta_1^{-1} \delta_1^{-1} = \varepsilon$
 $\delta_5^{-1} = \delta_5 \cdots \delta_5$ (arbitables)