

There are four possibilities:		Goal: Smittle a to
Bn-18n	replace with	
1. (ab)(ab)	દ	
5 2. (ac)(ab)	(ab)(bc)	~ (a b c)
3. (bd)(ab)	(ad)(db)	~ (a d b)
(4. (cd) (ab)	(ab)(cd)	

Result of replacement: a appears in β_{n-1} but not β_n .

In case (1), get
$$\varepsilon = \beta_1 - - - \beta_n = \beta_1 \beta_2 - - \beta_{n-2}$$

Done because $n-2$ is even by induction

hypothesis, so n is even as well /

For the remaining three cases, repeat process with

$$\frac{\text{Claim}}{\text{Claim}} \quad \text{Must eventually find } \left\{ \beta_{i} \beta_{i+1} = (a \times \lambda a \times) \right\}$$
for some i and some x.

$$\frac{\text{Why? If not, more a all the way to } \beta_{i} :$$

$$\frac{e_{i} (a \times)() - - - ()}{\text{The a lare.}}$$
where a appears only in the first transposition.
But than $\epsilon(a) = x$

$$\binom{e_{i}}{a} (antradiction be cause. \ 2(a) = a.$$
Thus $\beta_{i} \beta_{i+1} = (a \times a \times)$ for some i and some x. So
replace $\beta_{i} \beta_{i+1}$ with ϵ to see that
 ϵ is a product of $n-2$ 2-cycles. By induction
 $n-2$ is even, so is even $\sqrt{}$