The (Lagrange's Thm)
If G is finite and Hs G, then 1H divides 1G1.
The number of distinct left (a right) cosets of H in G
is
$$\frac{|G|}{|H|}$$
.
Proof: By properties of cosets,
G is partitived by the H att G
distinct cosets of H:
 $G = a_1 H \vee a_2 H \vee \cdots - \vee u_n H$ ($a_1 H \cap a_1 H = \phi \ if \ i \neq j$)
Furthermore, $|a_1:H| = |H|$ for all i.
So $|G| = n |H|$. ($n = number of distinct cosets$.)
So $|G| = n |H|$. ($n = number of distinct cosets$.)
So $|H| | |G|$. $G = a_1 H | G$.

Deth The index of H in G, denoted [G:H], is the
number of distinct cosets of H in G.
Note:
$$[G:H] = \frac{|G|}{|H|}$$
.
Note: $[G:H] = \frac{|G|}{|H|}$.
Corollary If $a \in G$, $|a|$ divides $|G|$.
proof: $|a| = |\langle a \rangle|$ and $\langle a \rangle \leq G$.
Corollary If $a \in G$, $|a|$ divides $|G|$.
Corollary If $a \in G$, $a^{|G|} = e$.
Corollary If $a \in G$, $a^{|G|} = e$.
Corollary If $|G| = p$, a prime, then G is agains.
proof: Sps $a \in G$ and $a \neq e$.
Since $|a|$ divides p , $|a| = p$, so $\langle a \rangle \leq G$.