(⇒) OTOH, sps. G@H is cyclic, generated by
$$(q', h')$$
.
So $|(q', h')| = mn$ and mh is the smallest
power s.t. $(q', h')^{mn} = (e_{c}, e_{H})$.
Let $d = gcd(m, n)$. (NTS: $d = 1$)
Then $\frac{m}{d} \in \mathbb{Z}$ and $\frac{n}{d} \in \mathbb{Z}$. Thus
 $|(q', h')^{\frac{mn}{d}} = ((((q')^{m})^{\frac{n}{d}}, (((h')^{n})^{\frac{m}{d}}) = (e_{c}, e_{H}))$
 e_{c} e_{H}
(because $|q'|| |(c| and $|h'|| ||H|)$
Thus, $d = 1$ because mn is the smallest
power we can raise (q', h') to to get
the identity.$

Note: this extends to the product of many groups: Sps. G1, G2,..., Gn are finite cyclic. Then G. @ G2 @ - - . Gn cyclic æ gcd (16;1,16;1) = 1 when i≠j. C painnic relatively prime Ex. Zz & Zy & Zz ~ cyclic Ex. Z2 @ Z4 @ Z5 ~ not cyclic モブ